

By

Hume Energy Enterprises LLC and the The Division of Energy and Innovation at The University of Houston

What is the Center for Petroleum **Exploration**?

A partnership between the U of H and the Directorate General of Hydrocarbons, India. Our mandate is to:

- Provide third-party, independent evaluation of the work conducted on the Anadaman and Mahanadi/Bengal 1. Basins using all available data provided by the DGH.
 - This phase is now complete, and a structured and cleaned database has been created.
 - A data room is available to companies interested in accessing this data and pursuing oil and gas ii. exploration in these areas.
- Allow the faculty and students at the University of Houston to conduct research on the basins. 2.
 - The aim is to add additional value to the work conducted to date and make the prospects for future exploration more attractive to a broader oil and gas community.
 - ii. It will also allow students access to real data and will challenge them to solve real issues associated with exploration while they pursue their graduate degrees.
 - The results of this work will be published and made available through the UH/DGH data room. iii.

Why Invest in Upstream Oil and Gas in India?

India wants to increase domestic oil and gas production and reduce reliance on foreign energy imports

India is committed to reduce the use of high carbon forms of energy by switching to a gas-based economy

As the Indian economy grows, the market for hydrocarbons In India will continue to expand

India recognizes the need for western investment and technology to help achieve these goals

India has made major reforms to how exploration is conducted and has become a very favorable jurisdiction for petroleum exploration and development

Many restrictions previously in place have been lifted and data is now easily accessible

Prospects in ~99% of EEZ Opened up for E&P

Note: Exclusive Economic Zone (EEZ) extends to a maximum of 200 Nautical miles from the baseline

Streamlined processes to further drive sector attractiveness

Operators have freedom to submit Eols throughout the year

Play based exploration

Longer exploration duration and larger block areas to incentivize play-based exploration

Shared responsibility Statutory clearances are taken as shared responsibilities

Opportunity to partner with existing players Global players have entered partnerships with Indian companies

Royalty Structure under HELP (Hydrocarbon Exploration and Licensing Policy)

Division of Energy and Innovation UNIVERSITY OF HOUSTON

100°E

30°N

10°N

95°E

Category - III

(Basins with only 'Prospective Resources'

to be explored and discovered

I In-second deenwater area

Indian Sedimentary Basins 65°E 70°E 95°E Tajikistan **1.1 Basin Locations** China Afghanistan East Andaman Basin 30°N Pakistan Nepal Bhutan 25°N Bangladesh West Andaman Basin Myanmar Mahanadi Basin 15°N 10°N **Bengal Basin** Legend 400 Isoba --- Exclusive Economic Zone 1.000 75°E 90°E 70°E 80°E 85°E

Category - I

(Basins with 'Reserves' being

produced and exploited

Pre-Cambrian basement/ ectonic sediments

Category - II

(Basins with 'Contingent Resources'

vater areas (0-400 m Isobath

to be developed and monetized)

Deepwater areas (> 400 m Isobath

The East Andaman Basin

Tectonic Setting

 The East Andaman Basin is composed of a complex series of sub-basin related to the tectonic setting

Tectonic Setting

Division of Energy and Innovation

 Tectonic Setting of The East and West Andaman Basins

Fig. 2.3 Regional 2D section (E-W) PGS 12 showing Tectonic elements

General Stratigraphy

Division of Energy and Innovation

UNIVERSITY OF HOUSTON

Generalized
 Stratigraphy of the
 East Andaman
 Basin

Table. 2.4.2. Generalised stratigraphy of Andaman Basin (Modified after Allen et al., 2007)

Geological, Geochemical and Seismic Surveys

Wells Drilled, Status and Hydrocarbon Shows

Division of Energy and Innovation

UNIVERSITY OF HOUSTON

Wells Drilled in Andaman Basin.

Wells Locations and Hydrocarbon Shows

Hydrocarbon Sources/Maturity – East Andaman Basin

UNIVERSITY OF HOUSTON

 The Paleocene, Cretaceous, Eocene, Oligocene and lower Miocene fall within thermal maturity 8 windows (Ro% > 0.5)

Í DGH

FIG. 55 REPRESENTATIVE THERMAL & MATURATION HISTORY IN DEEP WATERS OF ANDAMAN BASIN

DGH Hydrocarbon Sources/Maturity – E. Andaman Basin

Fig. 4.3.7.1. Sweeney & Burnham Easy Ro% - Paleocene SR1

Fig. 4.3.7.4. Sweeney & Burnham Easy Ro% - Eocene SR1

Division of Energy and Innovation

Biogenic Gas Sources

- Various gas shows have been attributed to biogenic sources.
- By their nature these occur in shallower reservoirs where formation temperature and water chemistry is favorable for bacterial activity.
- The Pliocene and Upper Miocene reservoirs may be sufficiently charged to warrant further investigation.

40 1 Same

Reservoir – E. Andaman Basin	Age
 Formation Stratigraphy of the Andaman Islands 	Pleistoce e Mid Mio- Pliocene
showing potential	Early-Mic Miocene
reservoir zones.	Early Miocene
	Oligocene

า	Age	Gi	roup / Me	Formation / ember	Thickn e ss (m)	Lithological Description
	Pleistocen e		Ne	eill Fm	45	Mod hd. buff col. fine to med. grained foram / algal calcarenite
	Mid Mio- Pliocene		Long Fm		1450	Grey massive mudstone, silty shale, hard limestone with sandstone at lower part
	Early-Mid Miocene	2	Ing	glisFm	280	Nanno / foram chalk, silty shale, shale
	Early Miocene		Str	ait Fm	90	Sandy limestone, soft marl, tuff, siliceous chalk, calc. siltstone
	Oligocene		Po	ort Blair Fm	1000+	Gray, brown, buff to light grey sandstone with grey / buff silt and shale interbeds; grits & conglomerates at base
	S	Ę.		Burma-Dera	410	Mainly shale with sand, marl, siltstone, and occ
	laceou	apanif	.e	Neali Alternation	318	Sand-shale alternation with minor limestone, conglomerates, Coal
	Crei	Kal	lgn 1	Lipa Sst	452	Sand, grit & conglomerate beds
	ocene to		Barata	Kalsi Shal e	260	Grey to dark grey carbonaceous shale / claystone with siltstone and sandstone
	Щ			Karma-tang Sst	846	Sandstone, carb. and phyllitic shale & limestone
	Pre-		Port	Meadow		Quartzites, phyllites, chert, jasper,
	Cretaceous			Fm		slate, cherty limestone and marble

Fig. 2.4.1: Generalized Stratigraphy of Andaman Islands by ONGC (Partly Modified)

Reservoir-East Andaman

Mid Miocene Thickness and Reservoir Facies

Fig. 3.6.1.4. Reservoir Facies - Mid Miocene

Reservoir – East Andaman Basin

Fig 3.2.1 Electrolog Correlation of Wells AN-1-2, AN-1-1, AN-1-3 & AN-1-4

Trapping and Prospects – East Andaman

- The best traps are structural closed fault blocks or anticlinal traps related to the complex tectonic history of the basin.
- The Time Structure Map of the Deepest Mappable Reflector shows the vast structural relief across the basin
- There is potential for stratigraphic traps in the form of carbonate buildups and truncated sandstones associated with the Mid-Miocene Unconformity

Trapping and Prospects East Andaman

Division of Energy and Innovation

Comments

Trap is a tilted fault block of Early Miocene carbonates. The structure is sealed by Mid Miocene shales, although there is an updip amplitude anomaly that could possibly be an indication of hydrocarbon leakage. This makes migration/timing a risk. Water depth is approximately 1275m.

Enclosure 2.18

Traps and Prospects East Andaman

Division of Energy and Innovation

UNIVERSITY OF HOUSTON

- Summary sheets are provided for each prospect
 - Example of Mid-Miocene truncation play.

Comments

MM T1 is a stratigraphic trap in which Mid Miocene sediments are truncated by the Mid Miocene unconformity and sealed by Late Miocene shales. The truncated beds against the unconformity form a structural high which could accumulate hydrocarbons. The main risk for the lead is that the reservoir is very shallow and the chance of biodegradation would be high. Water depth is approximately 2061m.

Enclosure 2.85

East Andaman Resource Potential

The Oligocene shows the most promise with 235.4 MMTOE (1.68B BBBLS)

Division of Energy and Innovation

East Andaman Resource Potential

• Potential Pool Sizes Top 20 Prospects

Line Numb er	Lead ID	Area Km Sq	Area Ac.	Est h Ft	Est Porosity	Est Sw	Estimated Depth Ft.	Estimated P Psi	Reservoir Formation	Тгар	ooip Mbls	ogip BCF	Risking Wa Average	ater Depth (m)
28	MM B1	15.0	3706.5	25	0.08	0.25	15,500	7207.5	Mid Miocene	Carbonate build up	36.6	107.6	1.5	2160
28	LM A1	20.0	4942.0	20	0.15	0.35	15,000	6975	Late Miocene	Anticline 4 way dip closure?	63.4	108.5	1.75	1125
27, 10	MM TFB2	101.0	24957.1	25	0.15	0.35	15,500	7207.5	Mid Miocene	Fault bound 3 way closure	401.1	1177.0	1.75	1935
20	EM A1	98.0	24215.8	30	0.15	0.35	16,000	7440	Early Miocene Sands	Faulted Anticline	467.1	1415.0	1.75	2285
16	MM A1	58.0	14331.8	25	0.15	0.35	15,500	7207.5	Mid Miocene Sands	Faulted Anticline	230.4	676.1	1.75	3075
27	MM A3	27.0	6671.7	30	0.15	0.35	15,500	7207.5	Mid Miocene	Anticlinal 4 way closure	128.7	377.7	2	1875
23	MM A13	18.0	4447.8	30	0.15	0.35	15,500	7207.5	Mid Miocene	Anticlinal fold	85.8	251.8	2	3007.5
16	LM A2	33.0	8154.3	20	0.15	0.35	15,000	6975	Late Miocene Sands	Anticline	104.8	297.8	2	3070
31	MM A27	40.5	10007.6	25	0.15	0.35	15,500	7207.5	Mid Miocene Sands	Anticline	160.8	472.1	2	3750
31	UNK A28	20.0	4942.0	25	0.15	0.35	15,500	7207.5	Mid Miocene Sands	Anticline	79.4	233.2	2	3050
31	UNK A29	29.3	7240.0	30	0.15	0.35	15,000	6975	Unknown aged Sands	Anticline	139.6	396.7	2	1240
27, 13	LO B3	19.5	4818.5	25	0.15	0.35	16,500	7672.5	Oligocene	Carbonate build up	77.4	242.0	2	1537.5
13	LO B4	15.3	3780.6	25	0.08	0.25	16,500	7672.5	Oligocene	Carbonate build up	37.4	116.8	2	1146
19	LO B7	27.0	6671.7	25	0.08	0.25	16,500	7672.5	Late Oligo Carbonates	Carbonate Buildup	66.0	206.2	2	1530
27	LO B1	42.0	10378.2	30	0.15	0.35	16,500	7672.5	Oligocene	Structural High	200.2	625.5	2	1745.25
27	LO B2	33.0	8154.3	30	0.15	0.35	16,500	7672.5	Oligocene	Structural High	157.2	491.4	2	2151
17	MM A10	16.0	3953.6	25	0.15	0.35	15,500	7207.5	Mid Miocene Sands	Anticline	63.5	186.5	2.25	1890
27	LM LST1	18.7	4620.8	20	0.15	0.35	15,000	6975	Late Miocene	Basin floor fan	59.4	168.8	2.25	2650.5
19	LM P1	56.0	13837.6	20	0.15	0.35	15,000	6975	Late Miocene Sands	Stratigraphic Pinchout	177.9	505.4	2.5	1530
23, 17	MM TFB20	39.3	9711.0	25	0.15	0.35	15,500	7207.5	Mid Miocene	Tilted fault block	156.1	458.1	2.5	2640

West Andaman Basin

Traps and Prospects West Andaman

The potential of the West Andaman Detailed Study Block has been evaluated using seismic

GEOTHERMAL GRADIENT

•

Reservoir West Andaman

- There are no wells drilled in the West Andaman Basin
- There are three DSDP wells drilled in the Bay of Bengal
- DSDP 217 is the closest to the Andaman Basin
- The Well AN-2-1 is located west of Andaman Island, but East of the Sunda Subduction Zone and hence is on the Asian Tectonic Plate.

Reservoir West Andaman

Division of Energy and Innovation

UNIVERSITY OF HOUSTON

• AN-2-1 was drilled to 4088m in the Cretaceous.

 Cretaceous Sandstones, Cretaceous to Eocene carbonates and Miocene to Pliocene sandstones (Turbidites) are potentail reservoir targets.

FIG. 25 LITHOSTRATIGRAPHIC COLUMN OF WELL AN-2-1

Traps and Prospects – West Andaman

• Based on seismic modelling Play fairways have been defined for the Cretaceous and Tertiary

ig. 4.1.1.18: Map showing the available prospects for Tertiary Play

West Andaman Resource Potential

Division of Energy and Innovation

Using the aerial yield method undiscovered resources were determined for the West Andaman Basin A resource of 12.26 MMTOE (90M BL OIL) has been calculated for the West Andaman

	H=G1+G2+G3+ G4	I=G2+G3	J=F-H	K=I+J	L	M=LxK	N	O=MxN	(P)	Q=OxP		
Plays	Total known traps in assesment	Total known leads and prospects	Postulated prospects in assesment unit.	Total undrilled future prospects	Future success rate	Future fields	Future iteld size	Undiscovered resource (Play Chance 1)	AU COS	Undiscovered resource (IMMOMOE)	Undiscovered resource Play (MMTOE)	
Feriary	2	2	1.44	3.44	0.1	0.34	21.32	7.34	0.256	1.88	1.69	
etaceous	5	5	3.61	8.61	0.1	0.86	50.71	43.67	0.2688	11.74	10.56	
-	£4.		<u>ا</u>						TOTAL	13.62	12.25654452	

Table 4.1.1.1b. Calculation of Undiscovered Resources

Mahanadi Basin

MAHANADI / BENGAL BASINS – Well Penetrations

Mahanadi: Geological Setting / Litho-stratigraphic Column

Division of Energy and Innovation

•

Mahanadi: Hydrocarbon Source

Division of Energy and Innovation

- In the Mahanadi Basin numerous source rock facies have been identified
- Source Thickness from Source Rock Log
 - Mahanadi -2, MDW-4A, MDW-4B, MDW-6, MDW-18
- Example Source-Reservoir Ratio in Mio-Pliocene
 - MDW-19, MDW-20, MDW-21

Mahanadi: Total Organic Carbon (TOC)

Mahanadi: Maturation

Fig. 4.3.7.5. Sweeney & Burnham Easy Ro% - Eocene

Mahanadi: Trap Type

Seismic Examples: Trap Types

Division of Energy and Innovation

UNIVERSITY OF HOUSTON

Mahanadi Volumetrics

UNIVERSITY OF HOUSTON

Bengal Basin

Bengal Basin: Schematic Section – Crustal Elements

Bengal: Generalized Stratigraphy

Division of Energy and Innovation

FIG. 24 COMPOSITE STRATIGRAPHY OF BENGAL BASIN

Bengal: Source Rocks

FIG. 35 SOURCE ROCK DATA OF LOWER GONDWANA, BENGAL BASIN

FIG. 36 CROSS PLOT OF HI Vs. Tmax OF PALASI – 1, BENGAL BASIN

Bengal: Total Organic Carbon (TOC)

4.2.7 Source Facies Maps

TOC of Source rock:

The generated TOC which are used in map/3D model input maps are given below as figs. 4.2.7.1 -4.2.7.4

Fig 4.2.7.1: TOC map of Pliocene & Miocene sequence

Depth [m]

Bengal: Maturation

Bengal: Reservoir

Bengal: Hydrocarbon Plays

Bengal Volumetrics

Prognosticated	d Volumes (In-pla	ace MMTO
Discovered	Undiscovered	Total
0	219	219

Significant potential in Pliocene plays. Primarily Biogenic Gas expected in strati-structural traps.

 There is 219 MMTOE (1.5 BBOE) Undiscovered in the Offshore Bengal Basin of which 110 MMTOE (752 MMBOE) is in the Middle Miocene

Thank You

For More Information Please Contact:

UH -DGH Center

Ministry of Petroleum and Natural Gas

Website- http://petroleum.nic.in/ Contact us: https://mopng.gov.in/en/about-us/phone-directory

Directorate General of Hydrocarbons

Website- https://dghindia.gov.in/ Contact us: http://dghindia.gov.in/contact_english.php

Get in touch at "investOnG@gov.in"

Hydrocarbon Exploration and Licensing Policy OALP Bid Rounds

Website- http://online.dghindia.org/oalp/ Facilitation Desk Email: Facilitationoal@dghindia.gov.in National Data Repository

Website: https://www.ndrdgh.gov.in/NDR/ Email: indr@dghindia.gov.in

UNIVERSITY OF HOUSTON

Division of Energy and Innovation

David W. Hume, P. Geol. Geoscience Consultant

Technology Bridge • 5000 Gulf Freeway, Building 1A Houston, TX 77204 • Cell 346.242.1757 dhume@central.uh.edu • dwhume@shaw.ca • uh.edu/uh-energy

UNIVERSITY OF HOUSTON

Division of Energy and Innovation

Michael R. Castele Geology and Geophysics Consultant

Technology Bridge • 5000 Gulf Freeway, Building 1A Houston, TX 77204 • Cell 330.421.4054 • mcastele@central.uh.edu mrcsubsurfacellc@gmail.com • uh.edu/uh-energy

Earth and Atmospheric Sciences

Robert R. Stewart, B.Sc., Ph.D., P.Geo. Cullen Chair in Exploration Geophysics Director, Allied Geophysical Lab

Science and Research Building 1 • 3507 Cullen Boulevard, Room 312 Houston, TX 77204-5007 • 713.743.3399 • Cell 832.244.1893 rrstewart@uh.edu • uh.edu

Earth and Atmospheric Sciences

Paul Mann, BA, Ph.D. Professor of Geology, Tectonics, Petroleum Geology Robert E. Sheriff Endowed Chair Director, Conjugate Basins, Tectonics and Hydrocarbons Consortium

Science and Research Building 1 3507 Cullen Blvd, Room 312 Houston, Texas 77204-5007 Email: pmann@uh.edu Office: 713-743-3646